Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system.

نویسندگان

  • Alejandro P Comellas
  • Laura A Dada
  • Emilia Lecuona
  • Liuska M Pesce
  • Navdeep S Chandel
  • Nancy Quesada
  • G R Scott Budinger
  • Ger J Strous
  • Aaron Ciechanover
  • Jacob I Sznajder
چکیده

We set out to determine whether cellular hypoxia, via mitochondrial reactive oxygen species, promotes Na,K-ATPase degradation via the ubiquitin-conjugating system. Cells exposed to 1.5% O2 had a decrease in Na,K-ATPase activity and oxygen consumption. The total cell pool of alpha1 Na,K-ATPase protein decreased on exposure to 1.5% O2 for 30 hours, whereas the plasma membrane Na,K-ATPase was 50% degraded after 2 hours of hypoxia, which was prevented by lysosome and proteasome inhibitors. When Chinese hamster ovary cells that exhibit a temperature-sensitive defect in E1 ubiquitin conjugation enzyme were incubated at 40 degrees C and 1.5% O2, the degradation of the alpha1 Na,K-ATPase was prevented. Exogenous reactive oxygen species increased the plasma membrane Na,K-ATPase degradation, whereas, in mitochondrial DNA deficient rho(0) cells and in cells transfected with small interfering RNA against Rieske iron sulfur protein, the hypoxia-mediated Na,K-ATPase degradation was prevented. The catalase/superoxide dismutase (SOD) mimetic (EUK-134) and glutathione peroxidase overexpression prevented the hypoxia-mediated Na,K-ATPase degradation and overexpression of SOD1, but not SOD2, partially inhibited the Na+ pump degradation. Accordingly, we provide evidence that during hypoxia, mitochondrial reactive oxygen species are necessary to degrade the plasma membrane Na,K-ATPase via the ubiquitin-conjugating system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the small GTPase RhoA in the hypoxia-induced decrease of plasma membrane Na,K-ATPase in A549 cells.

Hypoxia impairs alveolar fluid reabsorption by promoting Na,K-ATPase endocytosis, from the plasma membrane of alveolar epithelial cells. The present study was designed to determine whether hypoxia induces Na,K-ATPase endocytosis via reactive oxygen species (ROS)-mediated RhoA activation. In A549 cells, RhoA activation occurred within 15 minutes of cells exposure to hypoxia. This activation was ...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways.

The mechanisms of cadmium (Cd)-dependent nephrotoxicity were studied in a rat proximal tubule (PT) cell line. CdCl(2) (5 microM) increased the production of reactive oxygen species (ROS), as determined by oxidation of dihydrorhodamine 123 to fluorescent rhodamine 123. The levels of ubiquitin-conjugated cellular proteins were increased by Cd in a time-dependent fashion (maximum at 24-48 h). This...

متن کامل

Hypoxic reduction in cellular glutathione levels requires mitochondrial reactive oxygen species.

When exposed to hypoxia (1.5% O2), several cell types have been shown to increase production of reactive O2 species derived from the mitochondrial electron transport chain (mtROS). The general physiological consequences of hypoxic mtROS production are not completely understood, although several groups have demonstrated that mtROS promote the stabilization and activity of hypoxia inducible facto...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 98 10  شماره 

صفحات  -

تاریخ انتشار 2006